CURRENT WELL DATA

<table>
<thead>
<tr>
<th>SLOW CIRCULATION RATE (SCR):</th>
</tr>
</thead>
<tbody>
<tr>
<td>SCR taken @ _______________ (ft)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Pump #1</th>
<th>Pressure (psi)</th>
<th>Bbl/min</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pump #2</td>
<td>Pressure (psi)</td>
<td>Bbl/min</td>
</tr>
<tr>
<td>Pump #3</td>
<td>Pressure (psi)</td>
<td>Bbl/min</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>TOTAL DEPTH (MD)</th>
<th>ft</th>
</tr>
</thead>
<tbody>
<tr>
<td>TOTAL DEPTH (TVD)</td>
<td>ft</td>
</tr>
</tbody>
</table>

CASING DATA:

<table>
<thead>
<tr>
<th>CASING</th>
<th>size</th>
<th>ID</th>
<th>weight</th>
</tr>
</thead>
</table>

| CASING SHOE DEPTH | ft |

SHOE TEST DATA:

<table>
<thead>
<tr>
<th>Depth #1</th>
<th>@ Test MW of</th>
<th>(psi)</th>
<th>(ppg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Depth #2</td>
<td>@ Test MW of</td>
<td>(psi)</td>
<td>(ppg)</td>
</tr>
<tr>
<td>Depth #3</td>
<td>@ Test MW of</td>
<td>(psi)</td>
<td>(ppg)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>LINER #1</th>
<th>size</th>
<th>ID</th>
<th>weight</th>
</tr>
</thead>
<tbody>
<tr>
<td>LINER #2</td>
<td>size</td>
<td>ID</td>
<td>weight</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>LINER #1 TOP DEPTH</th>
<th>ft</th>
</tr>
</thead>
<tbody>
<tr>
<td>LINER #2 TOP DEPTH</td>
<td>ft</td>
</tr>
<tr>
<td>LINER #1 SHOE DEPTH</td>
<td>ft</td>
</tr>
<tr>
<td>LINER #2 SHOE DEPTH</td>
<td>ft</td>
</tr>
<tr>
<td>TVD CASING or LINER</td>
<td>ft</td>
</tr>
</tbody>
</table>

HOLE DATA:

| BIT SIZE | inches |

PROCEDURE

First Circulation to clear influx from well:

1. Bring pump(s) up to slow circulation rate and attempting to hold casing pressure constant by manipulating or adjusting the choke. The slow circulation rate will normally be 50% of the rate used in drilling operations.

2. Read and record Initial Circulating Pressure on Drill Pipe. This pressure should equal the SIDPP plus the slow circulation rate pressure.

 Recorded ICP __________ psi @ rate __________ spm

3. Maintain pump rate and drill pipe pressure constant until influx is circulated out of well.

4. Shut down pump(s) while holding casing pressure constant closing the choke as required. The trapped SIDPP will represent formation pressure.

5. With the pumps off and choke closed, the casing pressure and drill pipe pressures should be equal. If not, continue to circulate out the influx.

6. Record the new shut in casing pressure.

 SICP __________ psi

7. Calculate Kill Mud Weight.

 KMW = __________ ppg

8. Increase surface mud system to required KMW density.

Second Circulation to balance well:

1. Bring pump(s) up to slow circulation rate and open choke as required while holding new casing pressure constant.

2. Adjust the choke to hold the new casing pressure constant until the drill pipe is full of kill mud of the required density.

3. After drill pipe is full of kill mud, record drill pipe pressure.

 __________ psi

4. Hold pump rate constant and drill pipe pressure by adjusting the choke until the annulus is filled with kill mud.

5. When kill mud reaches the surface, choke pressure, if any, is bled off.

6. Stop circulating and check for flow.
Field Units

TRUE PUMP OUTPUT:

\[
\text{TRUE PUMP OUTPUT:} \quad \text{Bbls/Stk \at 100\% Efficiency TPO (Bbls/Stk)}
\]

DRILL STRING CAPACITY:

- **Drill #1:**
 - Size (in.)
 - Weight (lb/ft)
 - Bbls/ft
 - Length (ft)
 - DP

- **Pipe:**
 - Size (in.)
 - Weight (lb/ft)
 - Bbls/ft
 - Length (ft)

- **HWDP:**
 - Size (in.)
 - Weight (lb/ft)
 - Bbls/ft
 - Length (ft)

- **Drill #1:**
 - Size (in.)
 - Weight (lb/ft)
 - Bbls/ft
 - Length (ft)

- **Collars:**
 - Size (in.)
 - Weight (lb/ft)
 - Bbls/ft
 - Length (ft)

- **Surface:**
 - Size (in.)
 - Weight (lb/ft)
 - Bbls/ft
 - Length (ft)

\[
\text{Total Drill String Capacity (Bbls)} = \text{X} \times \% \text{ Efficiency} \times \text{TPO (Bbls/Stk)}
\]

ANNULAR CAPACITY (Between):

- **CSG and DP:**
 - Bbls/ft
 - ft

- **Liner #1 and DP:**
 - Bbls/ft
 - ft

- **Liner #2 and DP:**
 - Bbls/ft
 - ft

- **OH and DP/HWDP:**
 - Bbls/ft
 - ft

- **OH and DC:**
 - Bbls/ft
 - ft

STROKES, SURFACE TO BIT:

\[
\text{STROKES, SURFACE TO BIT:} \quad \frac{\text{Total Drill String Output (Bbls/Stk)}}{\text{True Pump Output (Bbls/Stk)}} = \frac{\text{Strokes, Surface to Bit}}{\text{Bbls/Stk}}
\]

STROKES, BIT TO SHOE:

\[
\text{STROKES, BIT TO SHOE:} \quad \frac{\text{Open Hole Annular Volume (Bbls)}}{\text{Strokes, Bit to Shoe}}
\]

STROKES, BIT TO SURFACE:

\[
\text{STROKES, BIT TO SURFACE:} \quad \frac{\text{Total Annular Volume (Bbls)}}{\text{Strokes, Bit to Surface}}
\]

TOTAL STROKES, SURFACE TO SURFACE:

\[
\text{TOTAL STROKES, SURFACE TO SURFACE:} \quad \text{Strokes, Surface to Bit} + \text{Strokes, Bit to Surface} = \text{Strokes, Surface to Surface}
\]

MAXIMUM ALLOWABLE ANNULUS SURFACE PRESSURE (MAASP)

\[
\text{MAXIMUM ALLOWABLE ANNULUS SURFACE PRESSURE (MAASP):} \quad (\frac{\text{Max. MW from Shoe Test (ppg)}}{\text{Present Mud Weight (ppg)}} - \frac{\text{True Vertical Depth Shoe (ft)}}{\text{Present Mud Weight (ppg)}}) \times 0.052 \times \text{True Vertical Depth Shoe (ft)} = \text{MAASP}
\]

MAXIMUM ALLOWABLE ANNULUS SURFACE PRESSURE (MAASP) WITH KILL MUD

\[
\text{MAXIMUM ALLOWABLE ANNULUS SURFACE PRESSURE (MAASP) WITH KILL MUD:} \quad (\frac{\text{Max. MW from Shoe Test (ppg)}}{\text{Kill Mud Weight (ppg)}} - \frac{\text{True Vertical Depth Shoe (ft)}}{\text{Kill Mud Weight (ppg)}}) \times 0.052 \times \text{True Vertical Depth Shoe (ft)} = \text{MAASP WITH KILL MUD}
\]

COMMENTS
FORMULAS

1. Pressure Gradient (psi/ft) = Mud Weight (ppg) x 0.052

2. Hydrostatic Pressure (psi) = Mud Weight (ppg) x 0.052 x Depth (ft, TVD)

3. Capacity (bbls/ft) = Inside Diameter^2 (in.) ÷ 1029.4

4. Annular Capacity (bbls/ft) = (Inside Diameter of Casing^2 (in.) or Hole Diameter^2 (in.) - Outside Diameter of Pipe^2 (in.)) ÷ 1029.4

5. Pipe Displacement (bbls/ft) = (Outside Diameter of pipe^2 (in.) - Inside Diameter of pipe^2 (in.)) ÷ 1029.4

6. Maximum Allowable Mud Weight (ppg) = \[\text{Surface LOT Pressure (psi)} ÷ \text{Shoe Depth (ft, TVD)} x 0.052\] + LOT Mud Weight (ppg)

7. MAASP (psi) = [Maximum Allowable Mud Weight (ppg) - Present Mud Weight (ppg)] x 0.052 x Shoe TVD (ft)

8. Pressure Drop per Foot Tripping Dry Pipe (psi/ft) = \[\frac{\text{Drilling Mud Weight (ppg)} \times 0.052 \times \text{Metal Displacement (bbl/ft)}}{\text{Casing Capacity (bbl/ft)} - \text{Metal Displacement (bbl/ft)}}\]

9. Pressure Drop per Foot Tripping Wet Pipe (psi/ft) = \[\frac{\text{Drilling Mud Weight (ppg)} \times 0.052 \times \text{Closed End Displacement (bbl/ft)}}{\text{Casing Capacity (bbl/ft)} - \text{Closed End Displacement (bbl/ft)}}\]

10. Formation Pressure (psi) = Hydrostatic Pressure Mud in Hole (psi) + SIDPP (psi)

11. EMW (ppg) @ Shoe = (SICP (psi) ÷ 0.052 ÷ Shoe Depth (ft, TVD)) + Present Mud Weight (ppg)

12. Sacks (100 lb) of Barite Needed to Weight-Up Mud = \[\frac{\text{Bbls of Mud in System} \times 14.9 \times (\text{KMW} - \text{OMW})}{(35.4 - \text{KMW})}\]

 NOTE: This formula assumes that the average density of Barite is 35.4 ppg and the average number of sacks (100 lb) per barrel is 14.9.

13. Volume Increase from Adding Barite (bbls) = Number of Sacks (100 lb) added ÷ 14.9

14. Equivalent Mud Weight (ppg) @ __________ depth (ft) = \[\frac{\text{Pressure (psi)}}{\text{Depth (ft, TVD)} \times 0.052} + \text{Current Mud Weight (ppg)}\]

15. Estimated New Pump Pressure at New Pump Rate (psi) = \[\text{Old Pump Pressure (psi)} \times \left(\frac{\text{New Pump Rate (SPM)}}{\text{Old Pump Rate (SPM)}}\right)^2\]

16. Estimated New Pump Pressure with New Mud Weight (psi) = \[\text{Old Pump Pressure (psi)} \times \left(\frac{\text{New Mud Weight (ppg)}}{\text{Old Mud Weight (ppg)}}\right)\]

COMMENTS